On The Sobolev Space Theory of Parabolic and Elliptic Equations in C1 Domains
نویسندگان
چکیده
Existence and uniqueness results are given for secondorder parabolic and elliptic equations with variable coefficients in C domains in Sobolev spaces with weights allowing the derivatives of solutions to blow up near the boundary. The “number” of derivatives can be negative and fractional. The coefficients of parabolic equations are only assumed to be measurable in time.
منابع مشابه
NEUMANN PROBLEM FOR NON-DIVERGENCE ELLIPTIC AND PARABOLIC EQUATIONS WITH BMOx COEFFICIENTS IN WEIGHTED SOBOLEV SPACES
We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables. Our results can be applied to Neumann boundary value problems for stochast...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملWeighted Sobolev Spaces and Degenerate Elliptic Equations
In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کاملOblique derivative problem for non-divergence parabolic equations with discontinuous in time coefficients
We consider an oblique derivative problem for non-divergence parabolic equations with discontinuous in t coefficients in a half-space. We obtain weighted coercive estimates of solutions in anisotropic Sobolev spaces. We also give an application of this result to linear parabolic equations in a bounded domain. In particular, if the boundary is of class C1,δ, δ ∈ (0, 1], then we present a coerciv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 36 شماره
صفحات -
تاریخ انتشار 2004