On The Sobolev Space Theory of Parabolic and Elliptic Equations in C1 Domains

نویسندگان

  • Kyeong-Hun Kim
  • Nicolai V. Krylov
چکیده

Existence and uniqueness results are given for secondorder parabolic and elliptic equations with variable coefficients in C domains in Sobolev spaces with weights allowing the derivatives of solutions to blow up near the boundary. The “number” of derivatives can be negative and fractional. The coefficients of parabolic equations are only assumed to be measurable in time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEUMANN PROBLEM FOR NON-DIVERGENCE ELLIPTIC AND PARABOLIC EQUATIONS WITH BMOx COEFFICIENTS IN WEIGHTED SOBOLEV SPACES

We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables. Our results can be applied to Neumann boundary value problems for stochast...

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Weighted Sobolev Spaces and Degenerate Elliptic Equations

In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

Oblique derivative problem for non-divergence parabolic equations with discontinuous in time coefficients

We consider an oblique derivative problem for non-divergence parabolic equations with discontinuous in t coefficients in a half-space. We obtain weighted coercive estimates of solutions in anisotropic Sobolev spaces. We also give an application of this result to linear parabolic equations in a bounded domain. In particular, if the boundary is of class C1,δ, δ ∈ (0, 1], then we present a coerciv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2004